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A two-dimensional free-time optimal control problem with an integral performance index which depends on a scalar parameter 
is considered. For zero value of the parameter the problem reduces to the well-known Fuller problem with the chattering 
phenomenon involving infinitely many switching points in a finite time [ 11. A preliminary analysis, based on the maximum principle, 
shows that such a regime is maintained.up to a certain critical value of the parameter, after which one has a two-switching regime 
involving a first-order singular arc. The optimality of the above-mentioned regimes is proved using dynamic programming. A 
group-invariant analysis of Bellman’s equation, similar to that in [2], reveals the structure of the twice differentiable Bellman’s 
function involving several unknown constants. These are found numerically from an algebraic system of equations. 0 2001 Elsevier 
Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

Consider an optimal control problem given by the following differential equations, control parameter 
constraints, initial and terminal conditions . 

x=y, j=u, OSfST, lul~l (1.1) 

x(0) = x0, y(0) = y”; x(T) = 0, y(T) = 0 

Here T is the free endpoint of the controlled motion and p is the scalar control parameter. The following 
functional, defined on the paths of system (l.l), is considered as the performance index (where L is a 
real-valued parameter) 

J = i X*(r)[LU(t)+ I]& I L IS I (1.2) 
0. 

The set of admissible controls consists of piecewise-continuous functions u(t), 0 G t c T, subject to the 
constraints in (l.l), i.e. having values in the range [-1, 11. The problem under consideration is to minimize 
functional (1.2) over the admissible trajectories of system (1.1). 

When L = 0 we have the so-called Fuller’s problem, investigated in [l, 21. A complete investigation 
of Fuller’s problem and some other optimal control problems involving chattering phenomenon can 
be found in [3]. Note that for IL 1 < 1 the integrand in functional (1.2) is positive. 

The restriction 1 L 1 c 1 on the parameter L makes functional (1.2) non-negative definite, while for 
other values of L, (L 1 > 1, a minimum of (1.2) does not exist and one can find a sequence of admissible 
controls such that functional (1.2) tends to -. 

Some computations for this paper were carried out in terms of another parameter a related to L by 
the equalities 

l+L 

a=iz’ 
-1SL<l; L=S, osu<- (1.3) 

Under this transformation functional (1.2), up to a positive multiplier a + 1, can be represented in the 
form 
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Note that it is sufficient to consider only positive values of the parameter L, since when L <: 0, one can 
replace it by a positive parameter by changing the sign of the control parameter and the phase 
coordinates in (1.1). 

In terms of a the Hamiltonians of the problem and the corresponding Poisson brackets take a simpler 
form. 

2. CONSTRUCTION OF THE SWITCHING CURVE 
USING THE MAXIMUM PRINCIPLE 

The optimal phase portrait of problem (1.1) (1.2) is g enerally characterized by a switching curve M 
that divides the (x, y) plane into two domains N’ and N-, in which the optimal control takes the value 
u = +l and u = -1 respectively. 

We assume, as in case when L = 0, see [l, 21, that the curve M for other values of L also consists of 
two half-parabolas M+ and M-, which, generally speaking, are asymmetric 

M+ : x=K+y2, ~20; M-z x=K_y2, yS0 (2.1) 

K+cO, K_>O 

Hence, the half-parabola M+ lies in the second quadrant of the (x, y) plane, while M- lies in the fourth 
quadrant, Fig. 1. 

It is well known that for L = 0 we have C = -K = 0.4446, [l, 21. Note that the asymmetric switching 
curve of the form (2.1) found in [4] is due to asymmetric constraints on the control parameter 
a c ~1 c b, whereas in the present paper it is due to the modified functional. Unlike the situation in 
[4] such a functional also causes a phase portrait bifurcation, as shown below. 

One can find the constants K, and K_ using the maximum principle [5]. To retain a single system of 
notation we will change the signs of the adjoint variables p and q and apply the minimum principle. 
Thus,p = -9 and q = -y, where Q and w are adjoint variables of the maximum principle. 

The Hamiltonian and its extremal values have the form 

H(x,y,p,q,u)=py+qu+x2(Lu+1) 

m;lnH=minlF+,F-]=py+x2-(q+Lr21 

F+=py+x2fqfLr2, u*=-sign(q+x2L) 

(2.2) 

Here the maximization procedure is replaced by minimization due to the change in the sign ofp and 
q; u* is the optimal control. 

Suppose the optimal trajectory, as in the case when L = 0, consists of parts of two families of parabolas 
corresponding to u = +l and u = -1. Consider a part of such a trajectory starting at the initial point 
by,) E M+, reaching the curve M- and lying in the domain N- where u = -1. Thus, the point x., y, 
and the corresponding quantities p*, q, satisfy the conditions 

Fig. I 
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Here the switching condition 

x. = K+ y: , q,+xlL=O 

Ff =p*y,+&q,+fx,2=0 

(2.3) 

q+Lr*=o (2.4) 

is used as well as the identity H(t) = 0, 0 G t s T, which arises from the maximum principle. Using 
relations (2.3) we can express the quantitiesx, ,p* and q, in terms ofy, as follows: 

-G = K+y:, p. = -K,2y,3, qa = -LK,2y: 

Integrating the system of equations of the maximum principle [5] for the domain N- 

(2.5) 

i=y, j, c-1, p=-F; = -2x(1 - L), 4 = -F; = -p 

with initial conditions (2.5) at t = 0 we obtain expressions fory,x,p and q as polynomials in t of degree 
1, 2, 3 and 4 respectively. In particular, y = -t + y.. At the instant of time t = t, when the trajectory 
reaches the curve M- the following two equalities must be satisfied: the switching condition (2.4) and 
the equation x = K-y* of the curve M-. Using polynomial expressions for X, y and q and introducing 
the notation 

A*(z) = - 4LTl&4L-1 * 

12 
-7 +(K, i2K,L+L)z+2KkL+K: 

3 

we can represent these two equalities in the following form 

2=1+ A’(Q=O; T=-f_ 
Y* 

(2.6) 

Expression (2.6) for z = t/y* corresponds to the maximum root of the quadratic equation 
x(t) = K-y*(t) in t, while the minimum root gives the print of intersection with that part of the parabola 
x = K-y* which is not used in the construction. 

Similarly, considering the part of the optimal path coming from M- to IV+ through the domain N+, 
we can obtain another pair of equations 

A-(p)=o; ,=’ 
Y* 

(2.7) 

System (2.6), (2.7) of four equations in the four unknowns K+, K_, T and p was used to calculate the 
relations K+(L) and K_(L); the latter relation is represented in Fig. 2. In particular, for L = 0 we obtain 
K_ = -K+ = 0.4446, the same as in [l, 21. 

System (2.6), (2.7) is only useful for the range of values (L 1 < l/4. For 1 L 1 > Y4 the chattering regime 
with infinitely many switchings is replaced by a regime with at most two switchings and with a first-order 
singular arc. 

On a singular segment two equalities are satisfied identically in time, namely, (2.4) and 

py+x2 =o (2.8) 

Equality (2.8) follows from switching condition (2.4) and from the vanishing of the Hamiltonian: 
H = 0. Differentiating equality (2.8) with respect to time along the solution of the Hamiltonian system 

i=H,=y, j=Hq=u 

/5=-H, =-2x(Lu+l), cj=-H,,=-p 

(2.9) 

we obtain 

-p+2xyL=O (2.10) 
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Fig. 2 

The latter equation together with (2.8) gives the following equation (of a parabola) for the singular arc 

x = -2 Ly2 (2.11) 

Differentiating equality (2.10) along the solutions of system (2.9) and using (2.11) we obtain the equality 
x(4Lu + 1) = 0, from which we get the singular control 

u, = -1 l(4L) (2.12) 

Using Hamiltonian (2.2) and the singular control (2.12) it can be shown that the so-called Kelley 
condition [6] is satisfied on the singular parabola (2.11) 

The change in the sign of the inequality here is due to the change in the sign of the adjoint variables. 
For the invariant form of the Kelley condition see [7]. 

The singular control (2.12) must satisfy the initial constraint 1 u, 1 =S 1, whence we see that the singular 
regime is only possible when 1 L 1 2 l/4. In that case parabola 2.11 takes the role of the branch M- (the 
branch M-) of the switching curve for L > l/4 (for L < -l/4). 

Hence, for i/4 s L s 1 we must put K, = -2L and determine the coefficient K_(L) from system (2.7); 
for -1 d L s -l/4 we must put K_ = -2L and find K+(L) from system (2.6). 

Computations showed that system (2.6), (2.7) is also compatible for IL I > l/4, but the 
corresponding values of K, and K_ are not elements of the solution of the optimal control problem. 
This can be verified by dynamic programming. 

3. BELLMAN’S EQUATION 

Let V(x, y) be the function of the optimal result (Bellman’s function) in problem (l.l), (1.2), i.e. the 
minimum value of functional (1.2) along the trajectories of system (1.1) starting at the point (x,y). The 
function V(x, y) is defined in the whole (x, y) plane and satisfies the equation 

min H 
av av av 

x,y,-,--,u 
u ax a.v 

= y-+x2 - ax I I 

!?!L+& 
ay 

=o 

U* = -sign 
( 1 

dv+h2 

ay 

(3.1) 

In the domains N- and N+, into which the switching curve A4 divides the (x, y) plane, Bellman’s function 



Mode reconstruction in a one-parameter family of optimal control problems 

satisfies the equations 

~-(x,y,~.~)ly~-~-~2+x2=o 
3V 

(X,Y)EN_, -+Lx2>o, u*=--1 ay 
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(3.2) 

(3.3) 

CLY) E N+, v+Lx2<o, u* =+I 
ay 

The HamiltoniansH, F+ and F- are defined in (2.2). We will denote the restriction of Bellman’s function 
to the domains N- and N+ by V- (x, y) and V+ (x, y): 

V’(x, y) = Vx, y). 0, y) E N* (3.4) 

Hence, the function V- (x,y) (the function V+ (x,y)) satisfies Eq. (3.2) (Eq. (3.3)). Equations (3.1)-(3.3) 
need to have boundary conditions. The terminal condition in (1.1) specifies the following value for 
Bellman’s function at the origin 

V(O,O) = 0 (3.5) 

This equality will also be considered as the boundary condition for Eqs (3.1)-(3.3). Generally speaking, 
for the two-dimensional problem regular boundary conditions must be specified on a certain curve rather 
than at a single point [8]. However, condition (3.5) happens to be sufficient for a unique solution due 
to a certain degeneracy of the problem. 

The solution of problem (3.1) (3.5) will be sought in the class of continuously differentiable 
functions, i.e. Eqs (3.1)-(3.3) are understood in the classical sense rather than in the generalized 
one. 

A group-invariant analysis enables us to simplify the solution of Bellman’s equation. We can verify 
that the equations and the constraints in (1.1) are invariant under the group of transformations 

x=j12x, y=uy, u=u, r=$, fl>o (3.6) 

where p > 0 is a scalar parameter. A multiplier p5 then arises in functional (1.2) which means that the 
values of Bellman’s function at the corresponding points V(x, y) and V&y) are connected by the relation 

V(x, y) = V(u2X, CLy) = $V(Z 7) (3.7) 

This enables us to express the function of two variables in terms of a function of one variable. Using 
the parameter p = l/y when y Z= 0 and u = -l/y when y s 0 in (3.6) and (3.7), we obtain the 
representation 

w,y)=Y5q(~Y-2)~ cp(z)= 1 V(z, l), Y>O 

-V(z,-l), y < 0 (3.8) 

The branches of the function cp(z) corresponding to the branches of Bellman’s function V-(x, y) and 
V’(x, y), according to relation (3.8), will be denoted by cp-, cp+: 

V’ky) = Y~~‘(xY-~), (x>Y) E A’* (3.9) 

The function (3.8) satisfies condition (3..5), which is thus a necessary condition for the existence of 
a self-similar solution of Eq. (3.1). This means that condition (3.5) cannot be used when constructing 
the functions cp+ and cp-. 

Equations (3.2) and (3.3) lead to the following ordinary differential equations for the functions 
cp+ and cp-, where z = xly*, 
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‘pf : cp(z)( 1 7 22) + 5(p(z) + t2( 1 * L) = 0 

The general solutions of the linear inhomogeneous equations (3.10) have the form 

(3.10) 

(3.11) 

where A+ are integration constants. It is assumed here that the point z = i/2 (the point z = -i/2) does 
not lie in the region in which the solution q’(z) (g-(z)) is defined. These points are singular points of 
Eqs (3.10) since the coefficients of higher derivatives vanish here. Of these points are internal points 
of the regions in which the solutions are defined, then the general solutions are two-parameter sets. 
For example, one can use different values of A, for different sides of the point z = i/2, say, A + and AI. 
Note that the two branches corresponding to A + and A: match smoothly at z = l/2, giving one single 
continuously differentiable function. Such a situation is encountered below when finding the constants 
A, and K?. 

Using (3.9) and (3.11) we obtain the following expressions for the values I”+ and I/- of the function 
V in the domains N+ and N- 

(3.12) 

0, y) E N* 

Here, generally speaking, each of the regions y 3 0 and y c 0 must have its own constant A+ or A_. 
However, the requirement that the functions V’(x, y) and V-(x, y) must be continuous at y = 0 leads 
to a common value for these constants, which is also assumed in (3.12). 

Hence, the construction of the smooth function V(x, y) reduces to finding the constants A+ and K,. 
The existence of such a smooth Bellman function, as follows, for example, from the results of [9], proves 
the optimal@ of the synthesis described in Sections 2 and 3. 

4. DETERMINATION OF THE PARAMETERS A, AND K+ 

When calculating A+ and K+ the parameter L is considered to be given. The amount of computation 
can be reduced thanks to the following symmetry when the sign of L is changed 

L+-L: A, +A,, K, -+-K,, V(x,y)+V(-x,-y) (4.1) 

In particular, it is sufficient to find the relation K_(L), IL 1 s 1, in order to obtain K+(L) = -K-(-L). 
To compute A+ and Kr in the range of values IL 1 s Y.4 one has to consider the following system of 

four equations 

v+(x,y)= v-c&y), - 
av+ +b2 

ay 
=0 (x= K_y2) 

V’ky) = v-t&y), 
av- -+L&-12 
ay 

=0 (x= K+y2) 

(4.2) 

(4.3) 

As can be seen from these values of x, Eq. (4.2) is considered along the curve M-, while Eq. (4.3) is 
considered along the curve M+. On substituting x = Cy* and x = Ky* into (4.2) and (4.3), a common 
factor y4 or y5 occurs, after cancelling which the following four equations in terms of the parameters 
A,, K, and L remain 

TA+i+-K,I%+2(1+L)(-b++K,-+K;)= 

(4.4) 
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Y 
x = - 1/2v 2 

x = ~  N- x 

u = I 1/2y 2 

Fig. 3 

(4.5) 

These equalities represent a system of four transcendental equations in the unknowns A_+ and K_., 
that was solved numerically using the MAPLE software package. 

For the range of values L >i 1/4, by (2.11) we have K = -2L. Substituting this value into Eq. (4.7) we 
can obtain the following value of the constant A = A 2 

A_* = 8x/-2 3 L -  1 
15 ~ (4.6) 

The function V*(x,y), equal to V-(x ,y)  in (3.12) with the constant (4.6), represents Bellman's function 
+ ~ . . . 

in the subdomain of N-  which lies between the parabolas M and x = - y ' /2  (Fig. 3). In the remaining 
part of the domain N-  the function V-(x, y)  represents the constant A_ which is found, together with 
A + and K_, from the system of three equations including (4.4) and (4.5) with upper sign and the modified 
equation (4.4) with lower sign in which we substitute A_ = A'_ and K+ = -2L. 

Note that when L = 1/4 we have K+ = -1/2, and to findA_, and K_ one has to use a system consisting 
of both Eqs (4.4) and Eq. (4.5) with the upper sign. The need for the constant A*_ from (4.6) in 
Eq. (4.4) disappears (the curve M ÷ coincides with x = -y2/2, Fi~. 3). Although also A'_ ~ ~,, as 
L ~ 1/4 3¢. 0, the value of V'(x, y) tends to a finite limit for (x, y) e M  : V* = (3/80)y 5. 

The values L ~< -1/4 are analysed similarly using substitution (4.1). 
The results of calculations are illustrated in Fig. 2 and by the following numerical data 

L 0.0 0.2 0.25 0.4 0.6 0.8 1.0 
A+ 0.7640 0.8998 0.9333 1.0291 1.1453 1.2513 1.3492 
A_ 0.7640 0.6269 0.5926 0.4894 0.3515 0.2133 0.0749 
A*_ . . . . . .  0.1947 0.5100 0.7119 0.8709 
K+ -0.4446 -0.4801 -0.5000 -0.8000 -1.2000 -1.6000 -2.0000 
K_ 0.4446 0.4277 0.4248 0.4174 0.4100 0.4044 0.4000 

The graph of the function K_(L), shown in Fig. 2, has a corner point at L = -1/4 when the phase portrait 
bifurcates. Correspondingly, the graph of K÷(L) has a corner point at L = 1/4. Values of K_(L) for some 
points in the range -1/4 ~< L <~ 1 were found numerically; in the range -1 ~< L ~< -1/4 the equality 
K_(L) = -2L is satisfied. 
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